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Specification of chirality for links and knots
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A general scheme has been developed for the assignment of chirality descriptors to
chiral links and knots. For oriented links and knots, the new D/L scheme employs linking
numbers, self-writhes, and writhe profiles, in descending hierarchical order, with self-
writhes and writhe profiles limited to alternating links and knots. A related scheme
applies to non-oriented links and knots. In a modification of a previous scheme, the use
of vertex-bicolored digraphs is introduced in order to compute writhe profiles of oriented
links and knots. It is pointed out that even though the different geometric presentations
of each individual chiral knot or link can be partitioned into homochirality classes, the
links and knots that belong to a given configurational class, D or L, are not homochirally
similar.

1. Introduction

We recently reported a scheme for assigning chirality descriptors (D and L) to
topologically chiral knots [1]. In the course of a subsequent study of topologically
chiral and achiral links [2], the question arose whether a method could be found to
effect a similar classification of chiral links. Our goal was to develop a unified
scheme that would encompass knots as well as links; a unified scheme is desirable
because a knot is just a special case of a link, i.e., a link with only one component.
The present paper describes a general scheme that incorporates this desirable fea-
ture. As will become clear in what is to follow, this process of unification entails an
extensive revision of our previous scheme [1].

In order to consider all possible topological constructions of links and knots,
account must be taken of orientation and invertibility [3]. In general, any given dia-
gram D(K) of a non-oriented link K with m components upon orientation yields a
set of 2™ oriented diagrams D'(K’). Equivalences or non-equivalences among these
diagrams depend on geometric or topological relationships. In the case of knots
(m = 1), the two oriented diagrams are topologically equivalent if the knot is inver-
tible (e.g., 31) and non-equivalent if it is non-invertible (e.g., 8;7). The situation
becomes significantly more complex in links with m > 1, as illustrated in Figs. 1-5
for the case of alternating links with m = 2. The notation is that of Doll and Hoste
[4], in which the components are indexed numerically and the orientation of each
component is symbolized by a “+”* or “—"’ sign.

© J.C. Baltzer AG, Science Publishers



242 C. Liang et al. / Specification of chirality for links and knots

Gp oGP
DIST+4) R | ﬂ D524
(P
PN
& &

D'S5i-+ D(5% --)

:
X

Fig. 1. The four oriented diagrams derived from the minimal-crossing diagram of one enantiomorph
ofthelink 53. D'(5} + +) = D'(5} — =) = D'(5} + —) = D'(5} — +).

In the simplest case, illustrated by one enantiomorph of the non-oriented
Whitehead link, 5% (Fig. 1), the four oriented diagrams are all related by twofold
rotations in 3-space, so there is only one isotopy type. This can be represented by a
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Fig. 2. The four oriented diagrams derived from the minimal-crossing diagram of the amphicheiral
link 2. D'(23 + +) = D'(2} — =) # D'(2} + —) = D'(2} — +). D'(2} + +) and D'(2? + —) are topolo-
gical enantiomorphs.
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Fig. 3. The four oriented diagrams derived from the minimal-crossing diagram of one enantiomorph

of the link 42. /(42 + +) = D'(43 ~ —) # D'(4} + —) = D'(4} — +). D'(43 + +) and D'(4? + —) are
topological diastereomorphs.
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Fig. 4. The four oriented diagrams derived from the minimal-crossing diagram of the amphicheiral

link 8;7#2% They represent four different isotopy types, with the relationships:

DI(8]7#2% ++)= D’(817#2$ + —)‘, D’(817#2§ —-—)= D’(817#2§ - +)‘ [A **” symbol denotes the
mirror image].
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Fig. 5. The four oriented diagrams derived from the minimal-crossing diagram of one enantiomorph
of the link 932#2% They represent four topological diastereomorphs.

single diagram, say D'(5? + +). In the second case, illustrated by the amphicheiral
non-oriented Hopf link, 22 (Fig. 2), the four oriented diagrams are pairwise related
by twofold rotations in 3-space, i.e., 2 ++ and 22 — —; 224+ — and 22 — +.
Because of the amphicheirality of the non-oriented link, the resulting two isotopy
types are related as enantiomorphs that can be represented by two oriented dia-
grams, say D' (2% + +) and D'(22 + —). In the third case, illustrated by one enantio-
morph of the simplest topologically chiral non-oriented link, 42 (Fig. 3), the four
oriented diagrams are pairwise related by twofold rotations in 3-space, i.e., 47 + +
and 42 — —; 42 + — and 47 — +. The resulting two isotopy types are not, however,
related as enantiomorphs since the non-oriented link is chiral. We refer to them as
diastereomorphs. The two diastereomorphs can be represented by two oriented
diagrams, say D'(4? + +)and D'(4? + -).

In the three cases listed thus far, both components are invertible knots. In the
remaining two cases, one or both components are non-invertible. In the first case,
both non-oriented components are amphicheiral. This case is illustrated by 87422
(Fig. 4), an amphicheiral composite link one of whose components (8,7) is non-
invertible. Orientation now yields four isotopy types, two diastereomorphs, i.e.,
817#2% + + and 8;7#22 + —, and their respective enantiomorphs, i.e., 8;7#2% — —
and 817#22 — +. The four types may be represented by the four oriented diagrams
in Fig. 4. In the second case, one or both non-oriented components are chiral. This
case is illustrated by one enantiomorph of the composite link 93,#22 (Fig. 5), a
chiral composite link one of whose components (93,) is non-invertible. Again,
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orientation yields four isotopy types, but now all four are diastereomorphs. The
four types may be represented by the four oriented diagrams in Fig. 5.

2. Oriented links and knots

The assignment of D and L configurations to chiral oriented links and knots fol-
lows the flowchart in Fig. 6. The first step consists in determining the linking num-
ber. Given an oriented link K’, the linking number /(X’) is one half the sum of the
characteristics € (i.e., the crossing number +1 or —1 in Fig. 1.34 of [5]) of the inter-
component crossings. The linking number is an invariant of K’ [5]; that is, /(K")
remains unchanged under ambient isotopies. If /(K’) # 0, then the sign of /(K")

IK)>0 Sign 1K) <0

of I(K/

IK)=0

Yes

(D) >0 si% s(D5:) <0

of s(D!

min

(D) =0

Find all non-equivalent
D, 'sof K’. For each

D, compute w,'s.

Twy >0 sign Ywy <0
of Zw’/
Ywr=0
Configuration Configuration Configuration
D unknown L

Fig. 6. Flowchart for the D/L specification of a given oriented chiral link or knot X’.
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determines the configuration of the link: the link is denoted D if /(X’) > 0 and L if
I(K') < 0.Forexample, D'(2? + +)and D'(2? + —) (Fig. 2) with [(K’) = +1and —1
have D and L configurations, respectively.

The linking number of all knots and of some links (e.g., 5%) is zero. Because a zero
value of /(K") cannot be used to assign configurations, we are forced to choose
another descriptor: the self-writhe [8].

Let D/, denote a minimal-crossing diagram of K'. The writhe w(D,, ) is the
sum of all the characteristics in D,,;,. The w(D),,, ) of an oriented alternating link is
an invariant [6,7]. In other words, any two minimal-crossing diagrams of an
oriented alternating link have the same w(D/,,,,).

Writhe w(D),,,) and linking number /( D, ) satisfy the following relation:

W(D;nin) = S(D:nin) + ZI(D:mn) ! (1)

where s(D),;,), the self-writhe, is the sum of the characteristics of self-crossings in
components of D,,... Because w(D,, ) and /(D,,, ) are both invariants, it follows
that s(D/,,,) is also an invariant. The invariance of s(D), ) is limited, however, to
alternating links or knots, and no configurations can therefore be assigned to non-
alternating knots, e.g., 8,9+, or links, e.g., 8%5 + +. For alternating links and knots,
however, the sign of s(D,,, ) determines the configuration of the link: the link is
denoted D if s(D;,;,,) > 0 and L if s(D,,,,) < 0. For example, all four oriented dia-
grams in Fig. 1 have /(K’) = 0 and s(D/,,,) = —1, and hence correspond to the L
configuration of the oriented Whitehead link. Similarly, the knot obtained by
orientation of 3; in Rolfsen’s tabulation [9] has /(K') = 0 and s(D;,,) = —3 and
hence is assigned the L configuration.

A zero value of s(D),, ) cannot be used to assign configurations. To classify
oriented chiral links or knots with /(D)) = 0 and s(D.,,.) = 0 (and therefore with
w(D, . ) = 0) into D and L classes, another method must therefore be used. The
approach that we have taken to specify the chirality of members in this ‘“zero set” is
based on the one developed previously for non-oriented knots [1].

At the heart of this method, called method of writhe profiles, is the transforma-
tion of a knot diagram into a vertex-bicolored graph by conversion of the crossing
points and arcs of the diagram into the vertices and edges of the corresponding
graph; over- and undercrossings are represented by appropriate (black or white)
colors. The method of writhe profiles was designed to take advantage of the differ-
ences between the environments of black and white vertices in vertex-bicolored
graphs that correspond to Dy.;,’s of chiral knots. The difference is that we are now
dealing with oriented links and knots, whose diagrams transform into directed
graphs or digraphs, i.e., graphs with oriented arcs instead of edges. Note that while
there is always a one-to-one mapping of oriented diagrams to vertex-bicolored
digraphs, there is, in general, a many-to-one mapping of such diagrams to vertex-
bicolored but non-oriented graphs; for example, D'(47 + +) and D'(4? + —)" are
represented by the same vertex-bicolored non-oriented graph.
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As a first step, a diagram is constructed from the vertex-bicolored digraph; this
diagram consists of a set of concentric spherical shells S,, p = 0, 1,2, . . ., with vertex
i at the center (p = 0). Adjacent vertices are then placed on the nearest shell, S;, and
connected to vertex i. This process is continued in an outward direction, from S; to
S,, and so forth. In the present case, because digraphs are being used, vertex j is said
to be adjacent to vertex i only if the vertices are connected by an arc directed from i
toj. The distinction between single and parallel double arcs is ignored; that is, even
if there are two arcs directed from one vertex to another in the link digraph, these
vertices will be connected by only one arc in the concentric-shell diagram.

Fig. 7 illustrates the construction of such a concentric-shell diagram from the
vertex-bicolored digraph of the oriented knot 7¢+. The resulting diagram differs
significantly from the corresponding diagram constructed from the vertex-bico-
lored graph of the non-oriented knot (Fig. 4 in [1], with double edges replaced by
single edges).

The pth order characteristic ¢, of the ith vertex is then defined as the sum of
the zeroeth-order characteristics of all the vertices j, on S, by eq. (2), where p is the
length of the walk from i to j, in which the same vertices can be revisited without
Hmit.

Fig. 7. Top left: Minimal-crossing diagram of oriented knot 74+. Top right: The corresponding
vertex-bicolored digraph with numbered vertices. Bottom: A concentric-shell diagram showing three
pthorder environments (bold-faced numbers) of vertex 1 at the center (p = 0).
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Ei(p)=ij,,(0), p=0,1,2,3,.... 2)

Jp

In general, the distributive form of €;,) over the N characteristics is

N
Ei(_p) = Z rk,i(p)Ek(o) , P= O, 1,2, 3, ey (3)
k=1

where r () is the contribution (or coefficient) of vertex & to €; ).

The pth-order writhe w, is defined as the sum of the €;,)’s of all N crossing points
in the link diagram, i.e. of all N vertices in the vertex-bicolored digraph. We intro-
duce the “prime” symbol in order to remind the reader that we are dealing with
oriented links:

N
wo=> e, p=01,23,. ... (4)
i=]

The writhe profile of a diagram consists of a series of ordered writhes, wy, w},
W), . .. whose first member, wj, (the zeroeth-order writhe), represents w(D., . ). Note
that for the zero set, w(D,,;,) = 0, by definition.

Let us analyze the w),’s and their components €;(,), for p running from zero to infi-
nity. At p = 0, each ¢;g) is either +1 or —1. Since the sum of the €;(g)’s, wy, is equal to
0 for the zero set, half of the €;)’s are +1 and half of them are —1. As the order p
increases, progressively more and more €;;,)’s share the same sign until a given
order, called py.n, is reached where all €;,)’s >0 or all ¢;(,)’s <0. As was previously
observed for non-oriented knots [1], in general there exists for every knot or link a
Pmin Such that all ;) components of w;, bear the same sign for p = p,,;,. Obviously,
Pmin = 01fand only if all ¢;p)’s have the same sign, 41 or —1. We made the empirical
observation that, starting with p,», the absolute magnitude of the sum of ¢;(,)’s, w,,
increases monotonically with an increase in p while its sign remains the same. This
allows an unequivocal assignment of a sign, positive or negative, to the writhe pro-
file, and overcomes the problem that the increase of w/, with an increase in p may
not necessarily be monotonic for p < p,.ix. Such erratic behavior had previously
been observed for writhe profiles of the non-oriented knots 77 and 94, [1]. At that
time this ““7; syndrome” was thought to be rare, but we have since found that it is
far from uncommon, at least among oriented knots and links. In the present work,
however, we are only concerned with the w’s of a link or knot diagram with
P = Pmin, and the 7; syndrome, even when it does occur, therefore becomes irrelevant
for our present purposes.

Another problem arises from the fact that the D), ’s of links and knots are not
topological invariants. Furthermore, the profiles are generally different for differ-
ent D), . ’s of the same link or knot. For alternating links or knots, we can overcome
this problem by generating all possible D/, ’s by the use of flypes [4,10,11]. As con-

jectured by Tait[10], and as proved by Menasco and Thistlethwaite [12], all possible



C. Liang et al. / Specification of chirality for links and knots 249

reduced diagrams of an alternating link or knot can be generated by operating with
flypes on any reduced diagram. The same applies to D/, ’s, since it was proved that
D/, .’s of alternating links and knots are also reduced [6]. Thus, with respect to alter-
nating links and knots, the way isclear to find all D}, ’s

First,howmany D/, ’s are there? Fig. 8 depicts the graph of a generalized flyping
diagram. The graph contains v contiguous vertices followed by ¢ contiguous tangles
T, where T contains more than one vertex. Through flypes, each crossing can be
“moved” to each inter-tangle space. The number n(v, ) of Djnm s that can be

derived from this flyping graph, including the original graph, is given by the combi-
natorial expression

(ke -2)
n(v, t) = ;W—T)' . (5)

Eq. (5) implies that ¢ >2, since flyping diagrams with only one tangle T give rise
only to trivial flypes.

Several flyping diagrams can be generated from a given link diagram, depending
on the crossing chosen to be “moved”. The total number n,,,(K") of D, ’s of a link
K'is therefore given by

z k =
) = [t ) = -1y S ©)

i=1 k=0

where z is the number of different flyping diagrams. All the D] . ’s of a given alter-
nating knot or link can thus be exhausively enumerated.

It remains to determine the number of non-equivalent diagrams among those
nioi(K') diagrams. Diagrams are said to be non-equivalent/equivalent if the corre-
sponding vertex-bicolored digraphs are non-equivalent/equivalent. We denote the
total number of non-equivalent D, ’s of an oriented link or knot K’ by n,..4(K').

For a given oriented link or knot, we are thus left with n,..,(K") diagrams, for each
of which we compute the writhe profile and determine its p,,;;. We then sum these
profiles, order by order. As we are concerned only with the w!’s of a diagram with
D = Pmin, the pmin of the sum of the profiles equals the largest p,,;, among the sum-
mands. We denote this p,,;, by A and define a new profile by the series

Nueq Npeq Nyeq

Z[le\]n) Z[Wl)\+l]n’ Z[W/A+2]n’

n=1 n=1 n=1

Fig. 8. Generalized flyping graph.
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The configuration, D or L, of the oriented link or knot is determined by the sign
of the first nonzero member of the series, > w),: D if ) w), is positive and L if it is
negative. Results for links and knots in the zero set are summarized below.

Among oriented chiral alternating prime links with up to 9 crossings and 4 com-
ponents [4], only five belong to the zero set (Fig. 9). Their configurations are listed
in Table 1. For all but one of the five links, n,.4(K’) = 1; the exception is 8%0 + +
with n,¢4(K') = 4. Note, with respect to Table 1, that oriented link 82, has only one
isotopy type, which means that all orientations are topologically equivalent. We
arbitrarily call this oriented link 8%, + +. Links 8 + —+, 83 + ——, 8} + + + —,
and 8} + + — — are all invertible because of symmetry. They are therefore topolo-
gically equivalent to the oriented links with all components reversed. Again, we
arbitrarily choose the names beginning with a “+” (e.g., 8 + —+ instead of
8 — +-).

The results for all oriented chiral alternating prime knots in the zero set with up
to 10 crossings are combined in Table 2. The subset headed by 84+ consists of inver-
tible knots whose two orientations are equivalent. The orientation is arbitrarily
denoted as “+”°. The subset headed by 8,7 + (—) (Fig. 10) consists of noninvertible
knots that are amphicheiral in their non-oriented state. The two oriented knots,
817+ and 8;7—, are therefore topological enantiomorphs whose configurations are
necessarily opposite. The subset headed by 10g; + (=) (Fig. 10) consists of non-
invertible knots that are chiral in their non-oriented state. The pairs of oriented
knots in this subset are topological diastereomorphs; configurations of diastereo-
morphs are not related by symmetry and may therefore be either opposite or the
same, as observed.

N Bhe (O
2(BG&G

82+ + () 82+ +(b) 85+ +(c) 8L+ +(d)

? S AN A
D

83+-- Bl+++- 814+~

Fig. 9. Minimal-crossing diagrams of oriented chiral alternating links 8}0 + -, 8% + —+, 83 A
87 4+ + + —,and 8} + + — —. Labeling and orientation of components follow the convention in [4].
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Writhe profiles and configurations of all oriented chiral alternating prime links with up to 9 crossings
and 4 components, and with /(K’)and s(D., ) = 0 (Fig.9)®.

Link Pmin Wy Wii Wi Wits D/L
diagram
8%, + +(a)® 7 +1475 +2720 +5025 +9280
82, + +(b) 5 +2995 +5492 +10119 -+18600
82, -+ +(c) 5 +1140 +2116 +3920 +7268
8%, + +(d) 13 +163 +288 +551 +1008
82, + + 13(A) +5773 +10616 +19615 +36156 D
8+ —+ 4(1) +18 +34 +62 +110
83+ —— 17(%) -21 -30 -39 —-52 L
8 +++— 2(2) +4 +6 +12 +18
8 4+ + — — 8()) +20 +28 +52 +92

%) For each link, the line corresponding to " w), 3 W), .. .isindicated in boldface.

b Doll and Hoste [4] list this diagram as the only D/

min

of link 8%0 + +.

Table2
Configurations of all oriented chiral alternating prime knots with up to 10 crossings and with
W(D;m'n) =0.
Knot Pneg A D/L
84+ 1 3 D
1015-1- 4 8 L
1019+ 4 4 D
105+ 8 10 D
1047+ 24 11 D
1045+ 2 25 D
1052—}- 4 5 L
1054+ 4 5 L
107+ 18 15 D
10104+ 1 31 D
10408+ 1 5 L
8174+ (—) 1 24 L(D)
1079 + (=) 1 46 L(D)
101 + (—) 4 8 L(D)
1085 + (=) 4 - unknown
10109 + (—) 1 28 L(D)
10435 + (=) 1 - unknown
10518 + {—) 1 42 L(D)
1091 + () 1 20(26) D(L)
1093 + (—) 1 4(5) D (D)
10197 + (=) 2 8(9) D (D)
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Fig. 10. Minimal-crossing diagrams of oriented chiral alternating knots 8,7+, 1079+, 1081+, 109;+,
10499+, and 10;5+.

With the exception of the three knots 1043+ (Fig. 11), 107+ (Fig. 11), and
10g,+ (Fig. 10), the writhe profiles of all the diagrams of a given knot in Table 2
were found to have the same sign. As shown in Table 3, the profiles of different dia-
grams in each of these three knots were found to be oppositely signed, but, thanks
to the scheme described above, their configurations could nevertheless be unam-
biguously established.

No configurations could be assigned to oriented knots 10g3 and 10,5 because
all the w;)’s in their writhe profiles are zero. This peculiar result can be explained as
follows. Recall that for any vertex v of a digraph, its out-degree, ¢, (v), is the num-
ber of arrows pointing away from v, and its in-degree, g;,(v), is the number of
arrows pointing towards v[13].

THEOREM
If a vertex-bicolored digraph is regular of degree g (9 = g,ur = ¢in), then its pth-
order writhe w, satisfies

w}:wgq", p=0,1,23 ... (7)
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Fig. 11. Minimal-crossing diagrams of oriented chiral alternating knots 1043+ and 107, +.
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Table 3
Writhe profiles and configurations of three selected oriented knots ).
Knot Pmin w/,\ W/,\.H WJ)_I,Z M”)\+3 D/L
diagram
1045+ (2) 18 +233 +313 +413 +544
1045+ (b) 25 —45 -59 ~79 —-106
1043+ 25(%) +188 +254 +334 +438 D
109+ (a) 11 +3535 +969 +1723 +3112
107+ (b) 15 —370 —665 —1230 -2167
107+ (c) 9 +5397 +9890 +17822 +32315
1071+ (d) 10 +1774 +3105 +5542 +9813
107+ (e) 6 +2381 +4219 +7493 +13323
107+ (D 9 +3866 +6924 +12389 +22242
1071+ (g) 7 +7484 +13498 +24350 +43885
1071+ (h) 5 +7270 +13088 +23560 +42391
107+ () 10 +8581 +15576 +28421 +51734
1091+ Q) 12 +621 +1119 +2031 +3600
107+ (k) 7 +3222 +5823 +10482 +18797
1094+ (1) 6 +3847 +6986 +12734 +22985
1071+ (m) 11 —1552 —2779 —4916 —8649
1071+ (n) 12 -177 —321 —555 ~997
1071+ (o) 9 +3622 +6494 +11681 +20912
1071+ (p) 10 +3924 +7066 +12744 +22981
107+ (q) 11 +2180 +3908 +7054 +12695
107+ (r) 9 +9311 +16964 +30879 +56152
107+ 15(2) +61916 +111864 +202204 +365124 D
10g;+ (a) 3 0 0 0 0
1081+ (b) 8 +56 +98 +172 +302
1051+ (c) 5 —66 —113 —-204 —365
105+ (d) 4 0 0 0 0
1081+ 8(%) -10 —15 -32 -63 L

%) For each knot, the line correspondingto 3w}, 3 W\, - - - isindicated in boldface.

The proof of this theorem parallels that of eq. (4) in [1].

Any vertex-bicolored digraph of a link is regular of degree two. It follows that
all w,’s should be zero for all oriented links with wy (D;,;,) = 0.In order to break this
regularity, the distinction,between parallel double arcs and single arcs is ignored in
our method. The vertex-bicolored digraphs corresponding to all D, ’s of the two

oriented knots 10gg+ and 10,5+ are regular but do not contain any parallel double
arcs. All of their w)’s are therefore unavoidably zero.

3. Non-oriented links and knots

Orientation of a given non-oriented chiral link may result in oriented links with
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different linking numbers; for example, 72 + + and 7% + — have linking numbers
+2 and —2. On the other hand, the sign and magnitude of the self-writhe are inde-
pendent of orientation. Any two minimal-crossing diagrams of an oriented alter-
nating link therefore have the same value of 5(D;,,,), and this value can be used to
assign D and L configurations to non-oriented chiral alternating links or knots: a
non-oriented link or knot is denoted D if s(D),,,) > 0 and L if s(D,,,,) < 0. For
example, s(D},,,,) is +3 for both 72 + + and 73 + —, and non-oriented 7% is therefore
assigned the D configuration. Where the linking number is zero, as in some links

(e.g., 5% and all knots, s(D.,,,) = w(D.,;,) (eq. (1)). It follows that in those cases the
configuration is simply given by the writhe, w(D,, . ). Furthermore, the configura-

tion is the same as for the corresponding oriented knot or link. For example, the
non-oriented link 52 in Fig. 1 and the knot 3; in Rolfsen’s tabulation [9] both have L
configurations.

The use of w(D),,,) in the assignment of configurations to non-oriented knots
has some precedents. In 1963, Tauber proposed that the absolute configuration of a
knot be designated R if w(D), ) > 0 and S if w(D),,,) < 0[14], and asserted that
“For certain knots ) ¢ [i.e., w(D,,,,)] = 0. This is exactly as it should be, for pre-
cisely these knots are identical with their mirror images”. In 1985, Walba [15]
reported a convention for the specification of chirality in knots that was in all essen-
tial respects the same as Tauber’s, with e = § and A, instead of +1 and —1, and chir-
ality descriptors A and A, instead of Rand S. According to Walba, “The number of
&sand X’ s are then summed arithmetically. If there are the same number of 6 and A
crossings, then the knot must be topologically achiral. If there are more A crossings,
the knot has configuration A. If there are more ¢ crossings, the knotis A™.

The Tauber—Walba scheme cannot be generally applied to non-alternating knots
because the D,,;,’s of amphicheiral non-alternating knots do not necessarily have
an equal number of over- and undercrossings. In such a case, w(D,,,,) cannot be
zero. For example, Thistlethwaite has found a 15-crossing non-alternating knot
that is amphicheiral (Fig. 13) [16]. A far more serious flaw in the Tauber-Walba
scheme is the fact that a writhe of zero is a necessary but not a sufficient condition
for the amphicheirality of alternating knots [1]. Thus, the conjecture that a knot
must be topologically achiral if there are the same number of § (or +) and A (or —)
crossings is easily refuted: there are plenty of knots with writhe zero that are topolo-
gically chiral. The simplest of these is 84. Nineteen of the 32 10-crossing prime knots
with writhe zero are chiral, and 13 of these are alternating [9]. Two hundred sixty-
two of the 320 12-crossing prime knots with writhe zero are chiral, and 159 of these
are alternating [16]. According to the Tauber—-Walba scheme, all of these knots
would be erroneously classified as amphicheiral. As noted above, a writhe of zero
may not even be a necessary condition for non-alternating amphicheiral knots. As
a further example, the product knot P #P; composed of a Perko pair with
w(P;) = +10and w(P;) = —8 has writhe +2 even though it is topologically achiral.
This knot can be isotoped to its mirror image, P} #P,, with writhe —2, or to compo-
site knots Py # P} and P,# P, both with writhe zero [1]. The method of writhe pro-
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) No
alternating
Yes
(D) >0 sign s(Dp) <0
of s(D,;.)
(D) =0

Find all 2™ (m 2 1) oriented
D,..'s. For each, generate all
non-equivalent D,;,'s. For
each Dy, compute w's.

Jwi>0 ﬁgn 2w, <0

of ZV
Swi =0

A

Configuration Configuration Configuration
D unknown L

Fig. 12. Flowchart for the D/L specification of a given non-oriented chiral link or knot XK.

files [1] was developed principally in order to find a way of assigning configurations
to chiral knots including those with writhe zero. The present approach (see flow-
chart in Fig. 12), though substantially modified from [1], retains the concept of

e (@
)

Fig. 13. Minimal-crossing diagrams of the same 15-crossing amphicheiral non-alternating knot with
oppositely signed writhes, w(D/,, ) = —1(leftyand w(D;, ;) = +1 (right) [16].
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The assignment of configurations to alternating knots and links with
s(D,,;,) = 01is less straightforward than for those with s(D), ) # 0. The first step is
the generation of all 2” oriented D, ,,’s that correspond to a given non-oriented link
or knot K and the n,.4(K’) diagrams of each. Next, writhe profiles are calculated
for all of these oriented diagrams. The profiles are then added, after determining
the largest p,.;» among the summands, as described in the preceding section for
oriented links and knots. The configuration, D or L, of the non-oriented link or
knot is determined by the sign of the first nonzero member of the series, >~ w/,: D if
S~ w, is positive and L if it is negative. Results for 4? (Fig. 3), 8%, (Fig. 9), and for
ten other prime links with up to nine crossings and four components (Fig. 14) are
summarized in Table 4. Note that the oriented links 42 + —, 62 + —, and 8% + — are
regular but do not contain any parallel double arcs; according to eq. (7), all of the
wr’s in each link are therefore equal to wj, (see Table 4).

Writhe profiles and configurations of the 14 non-oriented chiral alternating
prime knots with up to 10 crossings and w(D/,;,) = 0 had previously been reported
in Table 14 of [1]. With three exceptions, the configurations determined by the pres-
ent method are the same as those reported earlier. The three exceptions are 84, 1043,
and 10;05, whose configurations are now D, D, and L, respectively, instead of L, L,

@@@ o

COCC

PN SR
2 G (87
S

Fig. 14. Minimal-crossing diagrams of non-oriented chiral alternating links with zero self-writhe.
Labeling and orientation of components follow the convention in [4].
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4, Can knots and links be partitioned into homochirality classes?

Although the purpose of our scheme is purely pragmatic, the question naturally
arises whether knots and links that belong to the same configurational descriptor
class, D or L, also share a common topological feature. If this were the case, attri-
bution of D and L configurations would then acquire a deeper significance, and it
would make sense to place topologically chiral knots and links into “‘right-handed”
and “left-handed” homochirality classes. Any two knots or links in each class
would then be “homochirally similar’ [17, 18], in the manner of “‘two equal and
similar right hands™ [17]. But is this deeper meaning justified? More specifically,
are the crucial requirements for an acceptable division between right- and left-
handed objects satisfied?

Objects in homochirality classes [18, 19] must satisfy five conditions. First, every
chiral member of an “object class” (e.g., helices) is either in a “right-handed” (R)
or in a “‘left-handed” (L) configuration space. Second, every chiral object in R is
matched by its enantiomorph in L. Third, if achiral members exist within the object
class, they are neither in R nor in L. Fourth, if enantiomorphous objects can be
interconverted by continuous deformation, such an interconversion can take place
only by way of an achiral intermediate. Fifth, objects within each configuration
space are ‘‘chirally connected”, in the sense that they can be rendered congruent by
continuous deformation along chiral pathways. Such objects are said to be
“homochirally similar”. As an example from geometry [19], consider the set of tri-
angles in Euclidean 2-space (E?). Scalene triangles are chiral in E2, and the enantio-
morphs are characterized by the orientation, clockwise (R) vs. anticlockwise (L),
of the sides arranged in the order largest (/) > medium (m) > smallest (s).
Enantiomorphous triangles are represented as points in a pair of two-dimensional
configuration spaces that are separated by a one-dimensional boundary; the points
that make up this boundary space represent achiral triangles. There is no constraint
on the shape of the individual scalene triangles so long as they share the same chiral
characteristic, R or L. Homochirally similar triangles may be interconverted by
continuous deformation in E? and are therefore chirally connected, whereas con-
version of any given scalene triangle into its enantiomorph by continuous deforma-
tion in E? inevitably requires a route along an achiral pathway that leads through
an achiral (in E?) isosceles or equilateral triangle. That is, passage between the R
and L spaces is impossible without crossing an achiral boundary.

The enantiomorphs of a chiral knot or link cannot be interconverted by continu-
ous deformation in E?. On the other hand, the geometrically different presentations
of each individual enantiomorph can be interconverted by continuous deformation
in E3 and are therefore homochirally similar. The presentations of each chiral knot
or link thus fall into two homochirality classes, D and L, as illustrated in Fig. 15 for
the enantiomorphs of the trefoil knot. The situation is analogous to one encoun-
tered in chemistry, where the conformations (i.e., various geometric shapes that
result from bond angle deformations, bond stretching, and bond torsion) of a given
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O ® | © @
§® 96

Fig. 15. Diagrams of the enantiomorphous trefoil knots, 3| and 3}. Left: Homochiral presentations
for the D-configuration (3}). Right: Homochiral presentations for the L-configuration (3;).

chiral molecule are partitioned into two homochirality classes, denoted R and S,
Aand A, etc.

In contrast, different knots and links with, say, D configurations are not homo-
chirally similar because their presentations cannot be rendered congruent by con-
tinuous deformation in E*. Thus, no general commonality, other than of a common
configurational descriptor, can be claimed for the different links and knots within
each (D or L) configuration space, just as different chiral molecules that have in
common only their configurational descriptor, for example (S)-CHCIBrCH; and
(S)-alanine, are otherwise chemically distinct. The failure of the homochirality con-

o @ U

Fig. 16. Minimal-crossing diagrams of presentations with D, symmetry for the L-configuration of
knots 3y, 5;,and 7,.
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cept in this crucial respect answers the question posed above: no deeper meaning
can be attached to our D/L classification of links and knots.

Nevertheless, knots or links may be grouped into configurational families, like
the family of L-a-amino acids in chemistry, that have in common some structural
characteristic, even though the members of such families are not homochirally
similar. As an example, members of the family of knots 3;, 51, 7, . . . are character-
ized by a double helix along one of the C; axes of the D, presentation; the sense of
the double helix is left-handed for the L-configuration (Fig. 16) and right-handed
for the D-configuration.
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