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A general scheme has been developed for the assignment of chirality descriptors to 
chiral links and knots. For oriented links and knots, the new D/L scheme employs linking 
numbers, self-writhes, and writhe profiles, in descending hierarchical order, with self- 
writhes and writhe profiles limited to alternating links and knots. A related scheme 
applies to non-oriented links and knots. In a modification of a previous scheme, the use 
of vertex-bicolored digraphs is introduced in order to compute writhe profiles of oriented 
links and knots. It is pointed out that even though the different geometric presentations 
of each individual chiral knot or link can be partitioned into homochirality classes, the 
links and knots that belong to a given configurational class, D or L, are not homochirally 
similar. 

1. I n t r o d u c t i o n  

We recently reported a scheme for assigning chirality descriptors (D and L) to 
topologically chiral knots [1]. In the course of a subsequent study of  topologically 
chiral and achiral links [2], the question arose whether a method could be found to 
effect a similar classification of  chiral links. Our goal was to develop a unified 
scheme that  would encompass knots as well as links; a unified scheme is desirable 
because a knot  is just  a special case of  a link, i.e., a link with only one component .  
The present paper describes a general scheme that  incorporates this desirable fea- 
ture. As will become clear in what  is to follow, this process of  unification entails an 
extensive revision of  our previous scheme [1]. 

In order to consider all possible topological constructions of  links and knots, 
account must  be taken of orientation and invertibility [3]. In general, any given dia- 
gram D(K) of  a non-oriented link K with m components upon orientat ion yields a 
set o f  2 m oriented diagrams D ~ (K'). Equivalences or non-equivalences among these 
diagrams depend on geometric or topological relationships. In the case of  knots 
(m = 1), the two oriented diagrams are topologically equivalent if  the knot  is inver- 
tible (e.g., 31) and non-equivalent if it is non-invertible (e.g., 817). The si tuation 
becomes significantly more complex in links with rn > 1, as illustrated in Figs. 1-5 
for the case of  al ternating links with m = 2. The notat ion is that  of  Doll and Hoste  
[4], in which the components  are indexed numerically and the orientat ion of  each 
component  is symbolized by a " + "  or " - "  sign. 
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D'(5 ~ - +) O'(5 ~ - -) 

Fig. 1. The four oriented diagrams derived from the minimal-crossing diagram of one enantiomorph 
ofthelink 2 , 2 5, .  z) (5, + + )  = D'(5~ - - )  = D'(5~ + - )  = D'(5~ - +). 

In  the s imples t  case, i l lus t ra ted  by  one  e n a n t i o m o r p h  o f  the n o n - o r i e n t e d  
W h i t e h e a d  link, 5 2 (Fig.  1), the  four  o r i en ted  d iagrams  are all r e l a ted  by  t w o f o l d  
r o t a t i o n s  in 3-space,  so there  is on ly  one  i so topy  type.  This  can  be r ep re sen t ed  by  a 

D'(2~ + +) D'(2~ + -) 

D'(2~ -+) D~2~ --)  

Fig. 2. The four oriented diagrams derived from the minimal-crossing diagram of the amphicheiral 
link 22. D'(2~ + +) = D'(2~ - - )  ~ D'(2~ + - )  = D'(212 - +). D'(2~ + +) and D'(2~ + - )  are topolo- 

gical enantiomorphs. 
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D'(4~ + +) D'(4~ + -) 

D'(4~ - +) D'(4~ - - )  

Fig. 3. The four oriented diagrams derived from the minimal-crossing diagram of one enantiomorph 
of the link 42. D'(412 + +) = D'(42 - - )  ¢ D'(4~ + - )  = D'(4~ - +). D'(4~ + +) and D'(4~ + - )  are 

topological diastereomorphs. 

D'(8tT#2~ + +) D'(SjT#2 ~ +-) 

D'(817#2~ - +) D'(817#212 - - )  

Fig. 4. The four oriented diagrams derived from the minimal-crossing diagram of the amphicheiral 
link 817~22. They represent four different isotopy types, with the relationships: 
D'(817#2~ + +) = D'(817#22 + -)*, D'(817#2~ - --) = D'(817#2~ - +)* [A ..... symbol denotes the 

mirror image]. 
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D'(932#2 ~ + +) 

D'(932#2 ~ - +) 

D'(932#2 ~ + -) 

9 

~ . f l  0(932#2{ ) 

D'(932#2 ~ - -) 

Fig. 5. The four oriented diagrams derived from the minimal-crossing diagram of one enantiomorph 
of the link 932#2~. They represent four topological diastereomorphs. 

single diagram, say D'(52 + +). In the second case, illustrated by the amphicheiral 
non-oriented Hopflink,  22 (Fig. 2), the four oriented diagrams are pairwise related 
by twofold rotations in 3-space, i.e., 212 + + and 22 - - ;  22 + -  and 2 2 -  +. 
Because of the amphicheirality of the non-oriented link, the resulting two isotopy 
types are related as enantiomorphs that can be represented by two oriented dia- 
grams, say D'(22 + +) and D'(22 + -). In the third case, illustrated by one enantio- 
morph of the simplest topologically chiral non-oriented link, 42 (Fig. 3), the four 
oriented diagrams are pairwise related by twofold rotations in 3-space, i.e., 42 + + 
and 42 - - ;  42 + - and 42 - +. The resulting two isotopy types are not, however, 
related as enantiomorphs since the non-oriented link is chiral. We refer to them as 
diastereomorphs. The two diastereomorphs can be represented by two oriented 
diagrams, say D'(42 + + ) a n d  D'(4~ + - ) .  

In the three cases listed thus far, both components are invertible knots. In the 
remaining two cases, one or both components are non-invertible. In the first case, 
both non-oriented components are amphicheiral. This case is illustrated by 817422 
(Fig. 4), an amphicheiral composite link one of whose components (817) is non- 
invertible. Orientation now yields four isotopy types, two diastereomorphs, i.e., 
8174  22 q- q- and 817~22 -+- -- ,  and their respective enantiomorphs, i.e., 817~22 -- -- 

and 81742~ - +. The four types may be represented by the four oriented diagrams 
in Fig. 4. In the second case, one or both non-oriented components are chiral. This 
case is illustrated by one enantiomorph of the composite link 9324/:22 (Fig. 5), a 
chiral composite link one of whose components (932) is non-invertible. Again, 
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orientation yields four isotopy types, but now all four are diastereomorphs. The 
four types may be represented by the four oriented diagrams in Fig. 5. 

2. Or ien ted  links and  kno t s  

The assignment of D and L configurations to chiral oriented links and knots fol- 
lows the flowchart in Fig. 6. The first step consists in determining the linking num- 
ber. Given an oriented link K ~, the linking number  I(K ~) is one half  the sum of  the 
characteristics e (i.e., the crossing number + 1 or - 1  in Fig. 1.34 of  [5]) of  the inter- 
component  crossings. The linking number is an invariant of K ~ [5]; that  is, l(K ~) 
remains unchanged under ambient isotopies. If I(K/) ~ O, then the sign of  l(K ~) 

I(K') > 0 / s i g n ~  l(K3 < 0 

,< y 
l(K') = 0 

Yes 

s(O'~n ) = 0 

Find all non-equivalent I 
D'~n's o f  K'. For each 
D,~/n, compute Wp'S. 

s(D~.n) > 0 

Ew,~ > o 

Ew;, = o 

s(D'mi ~ ) < 0 

I I 
Fig. 6. Flowchart for the D / L  specification of a given oriented chiral link or knot K ' .  
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determines the configuration of  the link: the link is denoted D if l(K ~) > 0 and L if 
l(K') < 0. For  example, D'(212 + +) andD'(212 + - )  (Fig. 2)with l(K') = +1 a n d - 1  
have D and L configurations, respectively. 

The linking number  of  all knots and of  some links (e.g., 512) is zero. Because a zero 
value of  l(K') cannot be used to assign configurations, we are forced to choose 
another  descriptor: the self-writhe [8]. 

Let Dt in  denote a minimal-crossing diagram of K'. The writhe w(Dtmin) is the 
sum of all the characteristics in D~mi~. The w(D~i,) of an oriented alternating link is 
an invariant [6,7]. In other words, any two minimal-crossing diagrams of  an 
oriented alternating link have the same w(D~mi,). 

Writhe w(D~,,,i,) and linking number  l(D~mi,) satisfy the following relation: 

D 1 i i , w(mi~) = s(Dmin) + 21(Drain) (1) 

where / S(Dmin), the self-writhe, is the sum of the characteristics of self-crossings in 
! / ! l(Dmin) are components  of Dmi n. Because w(D,,i, ) and both invariants, it follows 

that  s(DImin) is also an invariant. The invariance of s(D~mi,) is limited, however, to 
alternating links or knots, and no configurations can therefore be assigned to non- 
alternating knots, e.g., 819+, or links, e.g., 8125 + +. For alternating links and knots, 
however, the sign of s(Dtmin) determines the configuration of the link: the link is 
denoted D ifs(Dtm;,) > 0 and L ifs(D~in) < 0. For example, all four oriented dia- 
grams in Fig. 1 have l(K') 0 and ' = s(Dmi~) = -1 ,  and hence correspond to the L 
configuration of the oriented Whitehead link. Similarly, the knot  obtained by 
orientation of 31 in Rolfsen's tabulation [9] has l(K ~) 0 and ' = s(Drnin ) = - 3  and 
hence is assigned the L configuration. 

A zero value of s(D~mi,) cannot be used to assign configurations. To classify 
! ! 

oriented chiral links or knots with l(Dmin) = 0 and s(Dmi,, ) = 0 (and therefore with 
w(D~i,) = 0) into D and L classes, another method must therefore be used. The 
approach that we have taken to specify the chirality of members in this "zero set" is 
based on the one developed previously for non-oriented knots [1]. 

At the heart of this method,  called method of  writhe profiles, is the transforma- 
tion of  a knot  diagram into a vertex-bicolored graph by conversion of the crossing 
points and arcs of the diagram into the vertices and edges of the corresponding 
graph; over- and undercrossings are represented by appropriate (black or white) 
colors. The method  of writhe profiles was designed to take advantage of  the differ- 
ences between the environments of black and white vertices in vertex-bicolored 
graphs that correspond to Dmi,'s of chiral knots. The difference is that we are now 
dealing with oriented links and knots, whose diagrams transform into directed 
graphs or digraphs, i.e., graphs with oriented arcs instead of edges. Note  that  while 
there is always a one-to-one mapping of oriented diagrams to vertex-bicolored 
digraphs, there is, in general, a many-to-one mapping of such diagrams to vertex- 
bicolored but non-oriented graphs; for example, D~(42 + +) and D~(42 + - )*  are 
represented by the same vertex-bicolored non-oriented graph. 
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As a first step, a diagram is constructed from the vertex-bicolored digraph; this 
diagram consists of  a set of  concentric spherical shells Sp,p = 0, 1 , 2 , . . . ,  with vertex 
i at the center (p = 0). Adjacent vertices are then placed on the nearest shell, $1, and 
connected to vertex i. This process is continued in an outward direction, from Sl to 
$2, and so forth. In the present case, because digraphs are being used, vertexj is said 
to be adjacent to vertex i only if the vertices are connected by an arc directed from i 
toj .  The distinction between single and parallel double arcs is ignored; that is, even 
if there are two arcs directed from one vertex to another in the link digraph, these 
vertices will be connected by only one arc in the concentric-shell diagram. 

Fig. 7 illustrates the construction of  such a concentric-shell diagram from the 
vertex-bicolored digraph of  the oriented knot 76+. The resulting diagram differs 
significantly from the corresponding diagram constructed from the vertex-bico- 
lored graph of  the non-oriented knot (Fig. 4 in [1], with double edges replaced by 
single edges). 

The pth order characteristic ei(p) of  the ith vertex is then defined as the sum of  
the zeroeth-order characteristics of  all the verticesjp on Sp by eq. (2), where p is the 
length of  the walk from i to jp in which the same vertices can be revisited without 
limit. 

4 

1 2 

Fig. 7. Top left: Minimal-crossing diagram of oriented knot 76+. Top right: The corresponding 
vertex-bicolored digraph with numbered vertices. Bottom: A concentric-shell diagram showing three 

pth order environments (bold-faced numbers) of vertex 1 at the center (p = 0). 
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el(p) = ~ %(o), P = 0, 1,2, 3, . . . .  (2) 
+ 

In general,  the distr ibutive fo rm of  ei(p) o v e r  the N characteristics is 

N 

ei(p) = ~ rk,i(p)ek(O) , p = 0, 1,2, 3 , . . .  , (3) 
k = l  

where rk,i(p) is the cont r ibut ion  (or coefficient) of  vertex k to ei(p). 
T h e p t h - o r d e r  wri the ~dp is defined as the sum of  the eiCo)'s of  all N crossing points  

in the link diagram,  i.e. of  all N vertices in the vertex-bicolored digraph.  We intro- 
duce the "p r ime"  symbol  in order  to remind the reader that  we are dealing with 
or iented links: 

N 

w'p=ZeiCo), p = 0 , 1 , 2 , 3 ,  . . . .  (4) 
i=1  

The writhe profile of  a d iagram consists of  a series of  ordered writhes, u/0, w], 
w'2,.. ,  whose first member ,  ~d 0 (the zeroeth-order  writhe), represents w(D'i,,). N o t e  
tha t  for the zero set, w(D',i,, ) = 0, by definition. 

Let us analyze the ~gp'S and their componen t s  ei(p), fo rp  running  f rom zero to infi- 
nity. At  p = 0, each ei(o) is either + 1 or - 1 .  Since the sum of  the ei(0)'s, rd 0, is equal to 
0 for the zero set, ha l f  of  the ei(0)'s are +1 and half  of  them are - 1 .  As the order  p 
increases, progressively more  and more  eiCo)'s share the same sign until  a given 
order,  called Pmi,,, is reached where all ei(p)'S/> 0 or all ei(p)'S ~< 0. As was previously 
observed for non-or iented  knots  [1], in general there exists for every kno t  or l ink a 
Pmin such that  all eiCo) componen t s  of  ~gp bear  the same sign f o r p  >~Pmin. Obviously,  
Pmi, = 0 if and only if all ei(0)'s have the same sign, + 1 or - 1 .  We made  the empirical  
observat ion  that ,  s tar t ing withpmin, the absolute magni tude  of  the sum of  ei(p)'s, Wp, 
increases monoton ica l ly  with an increase i n p  while its sign remains the same. This  
allows an unequivocal  ass ignment  of  a sign, positive or negative, to the wri the pro-  
file, and  overcomes  the p rob lem that  the increase of  ~dp with an increase in p may  
not  necessarily be mono ton i c  for p < Pmi,. Such erratic behavior  had  previously 
been observed for writhe profiles of  the non-or iented knots  77 and 942 [1]. At that  
t ime this "77 synd rome"  was though t  to be rare, but  we have since found  tha t  it is 
far f rom u n c o m m o n ,  at least among  oriented knots  and links. In the present  work,  
however ,  we are only concerned with the trip's of  a link or kno t  d iagram with 
P >Pmin, and  the 77 syndrome,  even when it does occur, therefore becomes irrelevant 
for our  present  purposes.  

! , 
Anothe r  p rob lem arises f rom the fact that  the Dmin s of links and knots  are not  

topological  invariants.  Fur the rmore ,  the profiles are generally different for differ- 
/ , 

en t  Dmin s of  the same link or knot .  For  al ternat ing links or knots,  we can overcome 
this p rob lem by generat ing all possible D'min's by the use of  flypes [4,10,11]. As con- 
jec tured  by Tait  [10], and as proved by Menasco  and Thist le thwaite  [12], all possible 
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reduced diagrams of an alternating link or knot can be generated by operating with 
/ , flypes on any reduced diagram. The same applies t o  Dmi n S, since it was proved that 

Dtmin'S of alternating links and knots are also reduced [6]. Thus, with respect to alter- 
nating links and knots, the way is clear to find all Dtmin'S. 

First, how many Dtmin'S a r e  there? Fig. 8 depicts the graph of a generalized flyping 
diagram. The graph contains v contiguous vertices followed by t contiguous tangles 
T, where T~ contains more than one vertex. Through flypes, each crossing can be 
"moved" to each inter-tangle space. The number n(v, t) of Otmin'S that can be 
derived from this flyping graph, including the original graph, is given by the combi- 
natorial expression 

+ t - 2 ) !  
n ( 7 3 ~  t) 

Eq. (5) implies that t ~> 2, since flyping diagrams with only one tangle T give rise 
only to trivial flypes. 

Several flyping diagrams can be generated from a given link diagram, depending 
on the crossing chosen to be "moved". The total number n~o~(K ~) o ~1 l_)mi nr~t 'S of a link 
K ~ is therefore given by 

l'ltot(K t) = n(2)i, ti ) = ~c!-~/-~S~ , (6) 
i = 1  

I , where z is the number of different flyping diagrams. All the Dmi . s of a given alter- 
nating knot or link can thus be exhausively enumerated. 

It remains to determine the number of non-equivalent diagrams among those 
ntot (K  ~) diagrams. Diagrams are said to be non-equivalent/equivalent if the corre- 
sponding vertex-bicolored digraphs are non-equivalent/equivalent. We denote the 
total number of non-equivalent Dtmin'S of an oriented link or knot K ~ by nneq(K~). 

For a given oriented link or knot, we are thus left with nneq(K ~) diagrams, for each 
of which we compute the writhe profile and determine its Pmi~. We then sum these 
profiles, order by order. As we are concerned only with the ~/p'S of a diagram with 
P )Pmin, the p , ~  of the sum of the profiles equals the largest Pmin among the sum- 
mands. We denote thispmi, by ~ and define a new profile by the series 

?lne q !~ln~q ?Ineq 

. . . .  

n = l  n = l  n = l  

V- ] V '?-i :~× " ?~,. N ~ ~:?. : 

Fig. 8. Generalized flyping graph. 
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The configxlration, D or L, of  the oriented link or knot  is determined.by the sign 
of  the first nonzero member  of  the series, ~ ~ :  D ify'~ ~/A is positive and L if it is 
negative. Results for links and knots in the zero set are summarized below. 

Among  oriented chiral alternating prime links with up to 9 crossings and 4 com- 
ponents [4], only five belong to the zero set (Fig. 9). Their configurations are listed 
in Table 1. For  all but one of  the five links, nneq(K t) = 1; the exception is 820 + + 
with nneq(K t) = 4. Note,  with respect to Table 1, that oriented link 820 has only one 
isotopy type, which means that all orientations are topologically equivalent. We 
arbitrari ly call this oriented link 820 + +. Links 8~ + - + ,  83 + - - ,  84 + + + - ,  
and 84 + + - - are all invertible because of  symmetry.  They are therefore topolo- 
gically equivalent to the oriented links with all components  reversed. Again, we 
arbitrari ly choose the names beginning with a " + "  (e.g., 8~ + - +  instead of  

- +-). 
The results for all oriented chiral alternating prime knots in the zero set with up 

to 10 crossings are combined in Table 2. The subset headed by 84+ consists of inver-  
tible knots whose two orientations are equivalent. The orientat ion is arbitrari ly 
denoted as " + " .  The subset headed by 8:7 + ( - )  (Fig. 10) consists ofnoninver t ib le  
knots that  are amphicheiral  in their non-oriented state. The two oriented knots,  
817-'}- and 817--, a r e  therefore topological enant iomorphs  whose configurations are 
necessarily opposite. The subset headed by 1091 -}- ( - - )  (Fig. 10) consists of  non- 
invertible knots that  are chiral in their non-oriented state. The pairs of  oriented 
knots in this subset are topological diastereomorphs; configurations of  diastereo- 
morphs  are not  related by symmetry  and may  therefore be either opposite or the 
same, as observed. 

81~+ + (a) s~2+ + (b) 8,~+ + (c) 8:~+ + (d) 

3 1 

2 

8~+-+ s~+--  s t+++-  8~++-- 

Fig. 9. Minimal-crossing diagrams of oriented chiral alternating links 8~0 + +, 8~ + -+ ,  83 + - - ,  
8~ + + + - ,  and 8~ + + - - .  Labeling and orientation of components follow the convention in [4]. 
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Table 1 
Writhe profiles and configurations of all oriented chiral alternating prime links with up to 9 crossings 
and 4 components, and with l(K') and s(D~i.) = 0 (Fig. 9) a) 

Link Pmin w'~ w'a+ 1 w'A+2 ~/~+3 D / L  
diagram 

820 + + (a) b) 7 +1475 +2720 +5025 +9280 
820 + + (b) 5 +2995 +5492 +10119 +18600 
82o + + (c) 5 +1140 +2116 +3920 +7268 
82o + + (d) 13 +163 +288 +551 +1008 

812o + + 13(k) +5773 +10616 +19615 +36156 D 

8~ + - +  4(k) + 1 8  + 3 4  + 6 2  + 1 1 0  D 

8~ + - -  17(k) -21  - 3 0  - 3 9  - 5 2  L 

814 + + + - 2(~.) + 4  + 6  + 1 2  + 1 8  D 

82 + + - - 8(k) + 2 0  + 2 8  + 5 2  + 9 2  D 

~) For each link, the line corresponding to y~ wsa, ~ ~/~+1 . . . .  is indicated in boldface. 
b) Doll and Hoste [4] list this diagram as the only D~i ~ of link 81z0 + +. 

Table 2 
Configurations of all oriented chiral alternating prime knots with up to 10 crossings and with 
w(D'min) = O. 

Knot nneq A D / L  

84+ 1 3 D 
1015+ 4 8 L 
1019+ 4 4 D 
1031+ 8 10 D 
1042+ 24 1 1 D 
1048+ 2 25 D 
1052+ 4 5 L 
1054+ 4 5 L 
1071+ 18 15 D 
101o4+ 1 31 D 
101o8+ l 5 L 

817 + ( - )  1 24 L(D) 
1079 + ( - )  1 46 L(D) 
1081 + ( - )  4 8 L(D) 
108s + ( - )  4 - unknown 
10109 + ( - )  1 28 L(D) 
10115 + ( - )  1 - unknown 
10118 + (--) 1 42 L(D) 

109a + ( - )  1 20 (26) D (L) 
1093 + ( - )  1 4(5) D(D) 
101o7 + ( - )  2 8(9) D(D) 
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8 17 + 1079+ 

1081+(a) lOsl+(b) lOsl+(c) lOsl+(d) 

1091+ 101o9+ lOlls+ 

Fig. 10. Minimal-crossing diagrams of oriented chiral alternating knots 817+, 1079q-, 1081+, 1091q-, 
10109q-, and 10118+. 

With the exception of  the three knots 1048+ (Fig. 11), 1071+ (Fig. 11), and 
1081+ (Fig. 10), the writhe profiles of all the diagrams of a given knot in Table 2 
were found to have the same sign. As shown in Table 3, the profiles of different dia- 
grams in each of these three knots were found to be oppositely signed, but, thanks 
to the scheme described above, their configurations could nevertheless be unam- 
biguously established. 

No  configurations could be assigned to oriented knots 1088 and 10115 because 
all the trip'S in their writhe profiles are zero. This peculiar result can be explained as 
follows. Recall that for any vertex v of a digraph, its out-degree, qout(v), is the num- 
ber of  arrows pointing away from v, and its in-degree, qi,,(v), is the number  of 
arrows pointing towards v [13]. 

THEOREM 
If a vertex-bicolored digraph is regular of degree q (q = qout = qi~), then its pth-  

order writhe ~p satisfies 

w~=w~q p, p = 0 , 1 , 2 , 3 , . . . .  (7) 



C. Liang et aL / Specification of chiralityfor links andknots 253 

1048+(a) 1048+(b) 

1071+(a) 1071+(b ) 1071+(C ) 

1071+(d) 1071+(e) 1071+(f) 

1071+(g) 107t+(h) 1071+(i) 

1071+(j) 1071+(k) 1071+(1) 

1071+(m) 1071+(n) 1071+(O) 

1071+(p) 1071+(q) 1071+(r) 

Fig. 1 1. Minimal-crossing diagrams 0 f oriented chiral alternating knots 1048 + and 1071 +. 
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Table 3 
Writhe profiles and configurations of three selected oriented knots a). 

Knot Pmi. n/a n/h+1 ~v~+2 u/a+3 D/L  
diagram 

10484 (a) 18 +233 +313 +413 4544 
1048+ (b) 25 -45 -59 -79 - 106 

104a+ 25(~.) +188 +254 +334 +438 

1071 + (a) 11 +535 +969 + 1723 +3112 
10714 (b) 15 -370 -665 - 1230 -2167 
1071 + (c) 9 +5397 +9890 + 17822 +32315 
10714 (d) 10 +1774 +3105 +5542 +9813 
1071 + (e) 6 +2381 +4219 +7493 + 13323 
10714 (f) 9 +3866 +6924 +12389 +22242 
1071 + (g) 7 +7484 +13498 +24350 +43885 
! 071 + (h) 5 +7270 + 13088 +23560 +42391 
1071+0) 10 +8581 +15576 +28421 +51734 
10714 (J) 12 +621 +1119 +2031 +3600 
1071 + (k) 7 +3222 +5823 + 10482 + 18797 
1071 + (1) 6 +3847 +6986 +12734 +22985 
1071 + (m) 11 - 1552 -2779 -4916 -8649 
1071 + (n) 12 - 177 -321 -555 -997 
10714 (o) 9 +3622 +6494 +11681 +20912 
1071 + (p) 10 +3924 +7066 + 12744 +22981 
1071 4 (q) 11 +2180 +3908 +7054 412695 
1071 + (r) 9 +9311 +16964 430879 +56152 

1071+ 15()~) +61916 +111864 +202204 +365124 

1081 + (a) 3 0 0 0 0 
1081 + (b) 8 +56 +98 + 172 +302 
1081 + (c) 5 -66 - 113 -204 -365 
1081+ (d) 4 0 0 0 0 

1081+ 8(~.) -- 10 -- 15 -- 32 --63 

D 

D 

L 

a) For each knot, the line corresponding to ~ v/A, ~ w'A+ l . . . .  is indicated in boldface. 

T h e  p r o o f  o f  this t h e o r e m  para l le l s  t h a t  o f e q .  (4) in [1 ]. 
A n y  v e r t e x - b i c o l o r e d  d i g r a p h  o f  a l ink is r egu l a r  o f  degree  two.  I t  fo l lows  t h a t  

all ~/p'S shou ld  be  ze ro  for  all o r i en ted  l inks wi th  ~d 0 (D~mi,,) = 0. In  o rde r  to  b r e a k  this  
r egu la r i ty ,  the  d i s t inc t ion .be tween  para l l e l  d o u b l e  arcs  a n d  single arcs  is i g n o r e d  in 

o u r  m e t h o d .  T h e  v e r t e x - b i c o l o r e d  d i g r a p h s  c o r r e s p o n d i n g  to  all D~,i,z's o f  the t w o  
o r i en t ed  k n o t s  1088 + a n d  101~ 5 + are  r egu la r  b u t  do  no t  c o n t a i n  a n y  para l le l  d o u b l e  
arcs .  All  o f  the i r  Vdp'S are  t he re fo re  u n a v o i d a b l y  zero.  

3. N o n - o r i e n t e d  l i n k s  a n d  k n o t s  

O r i e n t a t i o n  o f  a g iven  n o n - o r i e n t e d  ch i ra l  l ink m a y  resul t  in o r i en ted  l inks  wi th  
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different linking numbers; for example, 7 2 + + and 7 2 + - have linking numbers 
+2 and -2 .  On the other hand, the sign and magnitude of the self-writhe are inde- 
pendent  of orientation. Any two minimal-crossing diagrams of an oriented alter- 
nating link therefore have the same value of s(D~i,), and this value can be used to 
assign D and L configurations to non-oriented chiral alternating links or knots: a 
non-oriented link or knot  is denoted D if s(Dtmin) > 0 and L if s(Dtmin) < 0. For  
example, s(D~,i, ) is +3 for both 72 + + and 72 + - ,  and non-oriented 72 is therefore 
assigned the D configuration. Where the linking number is zero, as in some links 
(e.g., 52) and all knots, s(D~mi,) = w(D~,,,i,,) (eq. (1)). It follows that in those cases the 
configuration is simply given by the writhe, w(D~mi~). Furthermore,  the configura- 
tion is the same as for the corresponding oriented knot  or link. For example, the 
non-oriented link 52 in Fig. 1 and the knot 31 in Rolfsen's tabulation [9] both have L 
configurations. 

! The use of W(Dmin) in the assignment of configurations to non-oriented knots 
has some precedents. In 1963, Tauber proposed that the absolute configuration of a 
knot  be designated R if w(D~mi,,) > 0 and S if w(D~mi~) < 0 [14], and asserted that  
"For  certain knots ~ e [i.e., w(D~mi,)] = 0. This is exactly as it should be, for pre- 
cisely these knots are identical with their mirror images". In 1985, Walba [15] 
reported a convention for the specification ofchirality in knots that was in all essen- 
tial respects the same as Tauber's, with c = ~ and A, instead of + 1 and -1 ,  and chir- 
ality descriptors A and A, instead of R and S. According to Walba, "The number  of 
~'s and A' s are then summed arithmetically. If there are the same number  of 6 and A 
crossings, then the knot  must be topologically achiral. If there are more A crossings, 
the knot  has configuration A. If there are more ~ crossings, the knot  is A". 

The Tauber-Walba  scheme cannot be generally applied to non-alternating knots 
because the Drain'S of amphicheiral non-alternating knots do not necessarily have 
an equal number  of over- and undercrossings. In such a case, w(D~min) cannot be 
zero. For  example, Thistlethwaite has found a 15-crossing non-alternating knot  
that is amphicheiral (Fig. 13) [16]. A far more serious flaw in the Tauber-Walba  
scheme is the fact that a writhe of zero is a necessary but not a sufficient condition 
for the amphicheirality of alternating knots [1]. Thus, the conjecture that a knot  
must  be topologically achiral if there are the same number  of  3 (or +) and A (or - )  
crossings is easily refuted: there are plenty of knots with writhe zero that  are topolo- 
gically chiral. The simplest of these is 84. Nineteen of the 32 10-crossing prime knots 
with writhe zero are chiral, and 13 of these are alternating [9]. Two hundred sixty- 
two of  the 320 12-crossing prime knots with writhe zero are chiral, and 159 of these 
are alternating [16]. According to the Tauber-Walba scheme, all of these knots 
would be erroneously classified as amphicheiral. As noted above, a writhe of  zero 
may not  even be a necessary condition for non-alternating amphicheiral knots. As 
a further example, the product  knot P14¢P~ composed of a Perko pair with 
w(Pl) = + 10 and w(P~) = - 8  has writhe +2 even though it is topologically achiral. 
This knot  can be isotoped to its mirror image, P~#P2, with writhe -2 ,  or to compo- 
site knots P14PP~ and P2#P~, both with writhe zero [1]. The method  of writhe pro- 
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s(D£.,) > o 

E 

Yes 

s(O~,.,) = 0 

Find all 2m(m _> 1) oriented [ 
D~n's. For each, generate all[ 
non-equivalent D~n'S. For 
each D~n, compute w~'s. 

No 

s(D£,) < 0 

Ew;~ >o 

Ew; = o 

1  o   o,,onl  onf,.ra.Onu own i 

Fig. 12. Flowchart for the D / L specification of a given non-oriented chiral link or knot K. 

files [1] was developed pr incipal ly  in order  to f ind a way of  assigning conf igura t ions  
to chiral  kno ts  i n c l u d i n g  those  wi th  wri the  zero. The present  app roach  (see f low- 
char t  in Fig. 12), t hough  subs tan t ia l ly  mod i f i ed  f rom [1], retains the concept  o f  
writhe profiles. 

@ 
Fig. 13. Minimal-crossing diagrams of the same 15-crossing amphicheiral non-alternating knot with 

oppositely signed writhes, w(D~in) ---- - 1  ( l e f t )  and w(D'~i~) = + 1 (right) [16]. 
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The assignment of configurations to alternating knots and links with 
/ / 

= S(Dmin) ¢ O. first step is s(Dmin) 0 is less straightforward than for those with The 
the generation of all 2 m oriented D~min's that correspond to a given non-oriented link 
or knot  K and the nneq(K I) diagrams of each. Next, writhe profiles are calculated 
for all of  these oriented diagrams. The profiles are then added, after determining 
the largest Pmin among the summands,  as described in the preceding section for 
oriented links and knots. The configuration, D or L, of the non-oriented link or 
knot  is determined by the sign of the first nonzero member of the series, ~ WA: D if 

wk is positive and L if it is negative. Results for 42 (Fig. 3), 820 (Fig. 9), and for 
ten other prime links with up to nine crossings and four components  (Fig. 14) are 
summarized in Table 4. Note  that the oriented links 42 + - ,  62 + - ,  and 82 + - are 
regular but do not contain any parallel double arcs; according to eq. (7), all of the 
w~'s in each link are therefore equal to W 0 (see Table 4). 

Writhe profiles and configurations of the 14 non-oriented chiral alternating 
prime knots with up to 10 crossings and w(D~i,) = 0 had previously been reported 
in Table 14 of[l].  With three exceptions, the configurations determined by the pres- 
ent method  are the same as those reported earlier. The three exceptions are 84, 1093, 
and 101o8, whose configurations are now D, D, and L, respectively, instead of L, L, 
and D. 

3 

6~++ 6~+++ 8~++ 83++ 

8J++(a) 8~++(b) 892+ + (a) 8~+ + (b) 

3 1 

8,3+++ 8~+++ 8~+++ 8,4++++ 

Fig. 14. Minimal-crossing diagrams of non-oriented chiral alternating links with zero self-writhe. 
Labeling and orientation of components follow the convention in [4]. 
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4. Can  knots  and links be partit ioned into homochiral i ty  classes? 

Although the purpose of our scheme is purely pragmatic, the question naturally 
arises whether knots and links that belong to the same configurational descriptor 
class, D or L, also share a common topological feature. If this were the case, attri- 
bution of D and L configurations would then acquire a deeper significance, and it 
would make sense to place topologically chiral knots and links into "right-handed" 
and "left-handed" homochirality classes. Any two knots or links in each class 
would then be "homochirally similar" [17, 18], in the manner of "two equal and 
similar right hands" [17]. But is this deeper meaning justified? More specifically, 
are the crucial requirements for an acceptable division between right- and left- 
handed objects satisfied? 

Objects in homochirality classes [18, 19] must satisfy five conditions. First, every 
chiral member of an "object class" (e.g., helices) is either in a "right-handed" (R) 
or in a "left-handed" (L) configuration space. Second, every chiral object in R is 
matched by its enantiomorph in L. Third, if achiral members exist within the object 
class, they are neither in R nor in L. Fourth, if enantiomorphous objects can be 
interconverted by continuous deformation, such an interconversion can take place 
only by way of an achiral intermediate. Fifth, objects within each configuration 
space are "chirally connected", in the sense that they can be rendered congruent by 
continuous deformation along chiral pathways. Such objects are said to be 
"homochirally similar". As an example from geometry [19], consider the set of tri- 
angles in Euclidean 2-space (E2). Scalene triangles are chiral in E 2, and the enantio- 
morphs are characterized by the orientation, clockwise (R) vs. anticlockwise (L), 
of the sides arranged in the order largest (l) > medium (m) > smallest (s). 
Enantiomorphous triangles are represented as points in a pair of two-dimensional 
configuration spaces that are separated by a one-dimensional boundary; the points 
that make up this boundary space represent achiral triangles. There is no constraint 
on the shape of the individual scalene triangles so long as they share the same chiral 
characteristic, R or L. Homochirally similar triangles may be interconverted by 
continuous deformation in E 2 and are therefore chirally connected, whereas con- 
version of any given scalene triangle into its enantiomorph by continuous deforma- 
tion in E 2 inevitably requires a route along an achiral pathway that leads through 
an achiral (in E 2) isosceles or equilateral triangle. That is, passage between the R 
and L spaces is impossible without crossing an achiral boundary. 

The enantiomorphs of a chiral knot or link cannot be interconverted by continu- 
ous deformation in E 3. On the other hand, the geometrically different presentations 
of each individual enantiomorph c a n  be interconverted by continuous deformation 
in E 3 and are therefore homochirally similar. The presentations of each chiral knot 
or link thus fall into two homochirality classes, D and L, as illustrated in Fig. 15 for 
the enantiomorphs of the trefoil knot. The situation is analogous to one encoun- 
tered in chemistry, where the conformations (i.e., various geometric shapes that 
result from bond angle deformations, bond stretching, and bond torsion) of a given 
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Fig. 15. Diagrams of the enantiomorphous trefoil knots, 31 and 3 T. Left: Homochiral presentations 
for the D-configuration (3 D. Right: Homochiral presentations for the L-configuration (31). 

chiral molecule are part i t ioned into two homochiral i ty  classes, denoted R and S, 

A and A, etc. 
In contrast ,  different knots and links with, say, D configurations are not  homo-  

chirally similar because their presentations cannot  be rendered congruent  by con- 
t inuous deformat ion  in E 3. Thus, no general commonal i ty ,  other than of  a common  
configurat ional  descriptor, can be claimed for the different links and knots within 
each (D or L) configurat ion space, just as different chiral molecules that  have in 
c o m m o n  only their configurational  descriptor, for example (S)-CHC1BrCH3 and 
(S)-alanine, are otherwise chemically distinct. The failure of  the homochira l i ty  con- 

3~ 51 71 

Fig. 16. Minimal-crossing diagrams of presentations with D2 symmetry for the L-configuration of 
knots 31,51, and 71. 
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cept  in this crucial  respect answers  the ques t ion  posed above: no  deeper  m e a n i n g  
can  be a t t a c he d  to our  D / L classif icat ion o f  links and  knots .  

Never theless ,  kno ts  or links m a y  be g rouped  into conf igura t iona l  families,  like 
the fami ly  o f  L - a - a m i n o  acids in chemis t ry ,  tha t  have in c o m m o n  some s t ruc tura l  
character is t ic ,  even t hough  the members  o f  such families are no t  h o m o c h i r a l l y  
similar .  As an  example,  members  o f  the fami ly  o f  knots  3 ~, 51, 7 l, . . .  are charac ter -  
ized by a double  helix a long  one of  the C2 axes of  the D2 presenta t ion;  the sense o f  
the double  helix is l e f t -handed  for  the L-conf igura t ion  (Fig. 16) and  r i gh t -handed  
for  the D-conf igura t ion .  
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